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Boundary Layer Ingestion (BLI) offers
between 5% and 12% fuel burn savings
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Aft-mounted
BLI propulsor

Aft-mounted BLI engines

Mail-slot inlet
BLI propulsors



NASA’s Starc-ABL configuration applies
BLI to a traditional airframe
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Electric
BLI propulsor

Under-wing engines
and generator

Tube-with-wings configuration



The BLI propulsor is powered by an
electric motor delivering a constant 3500 hp

Turboelectric propulsion system has an electric BLI propulsor
powered by generators mounted on the under-wing turbofans
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2x 1925 hp generators
(90% transmission efficiency)

3500 hp motor



We simplified the configuration to focus on
the coupled performance of the BLI propulsor

Loosely based on 737 fuselage dimensions

Removed wing, tail, and under-wing engines to simplify the analysis
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BLI propulsor performance was
compared to a podded configuration

Exact same propulsor geometry, including inlet,
was used for both BLI and podded configurations
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The propulsion analysis was a
1D thermodynamic cycle model

modeled with pyCycle, a modular propulsion
cycle tool built in the OpenMDAO framework
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The aerodynamic analysis was a
2D axisymmetric RANS model

Mach contours

˜170,000 cell mesh

a single solve
takes ˜2 minutes
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The analyses were coupled via a Gauss-Seidel iteration

pyCycle → ADflow: fan-exit Pt and Tt

and required ṁ for 3500 hp

ADflow → pyCycle: mass-averaged fan-face Pt and Tt

GS and Broyden iterations implemented with OpenMDAO solvers
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For any given FPR the propulsor is resized
and the mass-flow across the propulsor is balanced

Modeling Fully Coupled Propulsion-Aerodynamic Modeling

FPR = 1.2

FPR = 1.35

baseline



Performance is examined via net force coefficient

CF -fuse should be negative, a decelerating force (i.e. drag)

CF -prop should be positive, an accelerating force (i.e. thrust)

CF -x can be positive or negative
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BLI offers 5 to 6 more force counts
for the same 3500 hp to the propulsor
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Propulsion-aerodynamic interactions cause the
boundary layer height to vary with FPR
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Propulsion-aerodynamic interactions cause the
boundary layer height to vary with FPR
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Improved propulsor performance accounts
for 50-60% of the BLI performance gain

Of the 5 to 6 total counts of improvement CF -x ,
3 counts come from increased CF -prop
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Fuselage drag reduction contributed
40-50% of the BLI performance gain

Of the 5 to 6 total counts of improvement CF -x ,
2 to 3 counts come from smaller CF -fuse
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Reduction in CF -fuse comes from an increased
surface static pressure on the aft-fuselage

the change in surface static pressure
profile is a strong function of FPR
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The performance gains from BLI come from a
combination of propulsion and aerodynamic effects

Capturing BLI effects requires a coupled simulation

Aerodynamic effects are strongly influenced by inlet design
and throttle setting
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The performance gains from BLI come from a
combination of propulsion and aerodynamic effects

Capturing BLI effects requires a coupled simulation

Aerodynamic effects are strongly influenced by inlet design
and throttle setting
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Next step is to perform optimization of this configuration
with propulsion and shape design variables
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